Identification	Subject	ENGR 205 Engineering Mechanics, 6 ECTS		
	Department	Mechanical Engineering		
	Program	Undergraduate Undergraduate		
	Term	Fall 2025		
	Instructor	Khalig Mammadov		
	E-mail:	khaliq.mammadov@khazar.org		
	Phone:	mang mammado (w) mazar org		
	Classroom/hours			
	Office hours			
Prerequisites				
Language	Physics I English			
Compulsory/Elective	Compulsory			
Required textbooks and	Engineering Mechanics: Statics, 9 th edition J.L. Meriam, L.G. Kraige and J.N. Bolton,			
course materials		nes. Suites, 7 Catton J.E. Mertan, E.G. Kraige and J.N. Botton,		
	2018			
Course outline	Engineering Mechanics, a branch of physical science, centers on examining the			
	effects of forces or	objects, playing a vital role in both engineering analysis and		
		ons. In the realm of engineering, the application of mechanical		
	principles is crucial for evaluating how forces and other factors impact diverse			
	subjects or systems. The progress and breakthroughs in various fields heavily depend			
	on employing these fundamental principles of mechanics, acting as the cornerstone			
	for research and advancements in areas like vibrations, fluid dynamics, engine			
	performance, and more.			
	A thorough understanding of this subject is indispensable for professionals working in			
	these domains and beyond. Furthermore, a strong grasp of Engineering Mechanics not			
	only serves as a prerequisite for individuals in these fields but also lays the			
	groundwork for a deeper comprehension of material sciences in subsequent courses,			
	offering students a robust foundation for their future studies.			
Carros abiantinas				
Course objectives	Engineering Mechanics serves as a fundamental pillar for numerous evolving fields.			
	Disciplines such as civil, mechanical, and agricultural engineering rely heavily on			
	statics and dynamics, which form the core of this subject. Even in fields not directly			
	linked to mechanical systems, such as robotic electronics or various manufacturing			
	processes, the principles of Engineering Mechanics find application in different ways.			
	Consequently, it holds a vital place in the engineering curriculum, offering a			
	structured approach to tackling complex problems in advanced subjects like applied			
	mathematics, physics, and material sciences. Furthermore, it strengthens students'			
	problem-solving skills in their current studies while fostering a solution-oriented			
Laguring automos	mindset. Upon successful completion of this course, students will acquire the following skills:			
Learning outcomes	Opon successful con	inpletion of this course, students will acquire the following skills:		
	1 1 37			
		on's laws of motion to address real-life problems.		
		ors and their applications in both 2D and 3D coordinate systems.		
		moment of a force, calculate its value about a specified axis, and		
	define the m	noment of a couple.		
	4. Determine f	orce applications at different points.		
	5. Construct "F	Free Body Diagrams" for real-world problems, employing		
		aws of motion and vector operations to assess equilibrium in		
	particles and			
	_			
		rinciples of equilibrium to analyze forces in planar truss members.		
	7. Provide an o	overview for the structural analysis of the beam construction,		

	which will be wid	which will be widely delivered in the next course on strength of materials				
Teaching methods	Lecture	Lecture				
	Group discussion		X			
	Experiential exercise					
	Tutorials once a month of	Tutorials once a month on weekends				
	Case analysis and assign	Case analysis and assignments				
	Course paper	Course paper				
	Others					
Evaluation	Methods	Date/deadlines	Percentage (%)			
	Midterm Exam		25			
	Class Participation		5			
	Assignment		15			
	Quizzes		15			
	Project		-			
	Final Exam		40			
	Total		100			
Policy	Propagation for Class					

Policy

Preparation for Class

The structure of this course necessitates individual effort outside the classroom for additional practice on various problems found in the textbook. Following each session, every student is required to allocate sufficient time for practice and completion of assignments by the specified deadline. In the Engineering Mechanics course, students will encounter four assignments designed to reinforce both theoretical and practical understanding. Timely submission is crucial, as late assignments will incur a 10% daily penalty.

To gauge students' comprehension of recent lecture topics, six quizzes will be administered as self-assessment tools. There will be no makeup quizzes unless there are documented emergencies or prior arrangements. The final grade will be determined based on assignments, quizzes, and a comprehensive final exam, with clearly provided grading criteria. Upholding academic integrity is imperative; therefore, ensure that your work is original, as plagiarism or cheating is strictly prohibited. If students have any queries or need clarification, do not hesitate to reach out to the instructor.

Homework

There will be a homework assignment for every chapter composed of exercises and problems.

Attendance

Students who attend the whole classes will get 5 marks. for three absence student loses 1 mark.

Withdrawal (Pass/Fail)

This course adheres to the School of Engineering's grading policy, requiring a minimum score of 60% for a passing grade. Failure to meet this requirement will result in the need to retake the course in the following term or year.

Ethics

Copying another student's work is strictly prohibited. Each student must complete their assignments independently in accordance with university policies. Violations of this rule will result in disciplinary action.

Cheating/Plagiarism

Any instance of cheating or plagiarism on assignments, midterms, or the final exam will result in automatic failure of the course. The student will receive a grade of zero (0) with no exceptions or considerations.

Professional Behavior Guidelines

Students are expected to maintain professional conduct and contribute to a positive
academic environment during class. Unapproved discussions and unethical behavior
are strictly discouraged.

Tentative Schedule

Week	Date/Day (tentative)	Topics	Textbook/Assignments	
1		Syllabus & Introduction	Chap 1	
2		Force Systems (Two-Dimensional Force Systems): -Rectangular Components -Moment -Couple -Resultants	Chap 2	
3		Force Systems (Three-Dimensional Force Systems): -Rectangular Components -Moment and Couple -Resultants	Chap 2	
4		Equilibrium (Equilibrium in Two Dimensions): -System Isolation and the Free-Body Diagram -Equilibrium Conditions	Chap 3	
5		Equilibrium (Equilibrium in Three Dimensions): -Equilibrium Conditions -Review	Chap 3	
6		Structures: -Plane Trusses -Method of Joints -Method of Sections	Chap 4	
7		Structures: -Space Trusses -Frames and Machines	Chap 4	
8		Solve problems – Review - Delivery of assignments. Midterm		
9		Distributed Forces - Introduction Centers of Mass and Centroids: -Center of Mass -Centroids of Lines, Areas, and Volumes	Chap 5	
10,11		Distributed Forces - Introduction Centers of Mass and Centroids: -Composite Bodies and Figures; Approximations -Theorems of Pappus	Chap 5	
12		Special Topics -Beams - External Effects -Beams - Internal Effects -Flexible Cables -Fluid Statics	Chap 5	
13		Area Moments of Inertia	Appendix A	
14		Mass Moments of Inertia	Appendix B	
15		Review – Solve problems - Delivery of assignments		
16		Final Exam		